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a b s t r a c t

In this work, a new method to compute the matrix exponential function by using
an approximation based on Euler polynomials is proposed. These polynomials are
used in combination with the scaling and squaring technique, considering an absolute
forward-type theoretical error. Its numerical and computational properties have been
evaluated and compared with the most current and competitive codes dedicated to
the computation of the matrix exponential. Under a heterogeneous test battery and a
set of exhaustive experiments, it has been demonstrated that the new method offers
performance in terms of accuracy and stability which is as good as or even better than
those of the considered methods, with an intermediate computational cost among all
of them. All of the above makes this a very competitive alternative that should be
considered in the growing list of available numerical methods and implementations
dedicated to the approximation of the matrix exponential.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Due to its numerous and varied applications in different areas of science and technology, the calculus of matrix
unctions has been the focus of many researchers in recent years. Among all matrix functions, the matrix exponential
A, where A ∈ Cr×r , stands out for its well-known application in solving systems of linear differential equations of first
order with constant coefficients, as well as the difficulties involved in its accurate calculation and approximation, which
has motivated to the development of papers that today could be considered classics (see the Refs. [1,2]).

Furthermore, the matrix exponential has applicability in other science areas. Numerous and different types of
exponential integrators are employed to solve diverse and varied problems, see for example [3] or [4]. In graph theory,
the matrix exponential, and other matrix functions [5], is used in the study of the connectivity of graphs. Precisely, the
Estrada index is defined as the trace of the matrix eA, where A is the adjacency matrix associated with the graph, see
for example [6]. Among the recent works that require the computation of the matrix exponential, we can mention the
Refs. [7–9], among many others.

Among the different methods proposed for the approximate calculation of the matrix exponential, we can highlight
those belonging to two large families, i.e., those based on rational approximations, such as Padé approximants, see
[10–14] for example, and those based on polynomial approximations, either those related to Taylor polynomials [15–19] or
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to other types such as Hermite [20,21] or Bernoulli [22] polynomials. From the numerical experiments performed, it can be
concluded that, in general, polynomial approximations offer higher accuracy than rational ones, although maybe requiring
a higher computational cost. On the other hand, an alternative approach to those ones just described for computing matrix
exponentials based on Vandermonde matrices is detailed in [23].

Most current methods use the scaling and squaring technique [12,13], consisting in the relationship

eA =

(
eA/2s

)2s
. (1)

This technique scales the matrix A by 2s to properly reduce its norm, being s the scaling parameter to be determined. Next,
once the approximation to the matrix exponential has been computed by means of rational or polynomial approaches,
successive s squaring steps must be applied to reverse the scaling effect.

Let Pm(A) be a polynomial of order m to be considered as an approximation to eA, after this degree m had been properly
chosen. Then, given the scaling factor s, from (1) one gets that Pm(A/2s) is an approximation to eA/2s and

eA ≈
(
Pm(A/2s)

)2s
. (2)

Throughout this paper, we will denote by Cn×n the set of all the complex square matrices of size n. We will represent
s In (or I if there is no possible confusion) the identity matrix in Cn×n. A matrix polynomial Pm(A) of degree m, where
∈ Cn×n and pj, for 0 ≤ j ≤ m, are complex numbers, is defined as

Pm(A) = pmAm
+ pm−1Am−1

+ · · · + p1A + p0I.

Traditionally, the cost of computing matrix functions by means of polynomial approximations, as is the case of the
xponential function according to expression (2), is expressed by means of matrix products. Thus, the number of such
ultiplications to be performed and their efficient execution becomes a key aspect that determines the effectiveness of
ny new proposed algorithm, especially when comparing its computational performance with those ones of the methods
lready present in the literature. A good survey of algorithms devoted to compute matrix products with a complexity
ower than O(n3) is collected in [24].

As usual, the matrix norm ∥·∥ stands for any subordinate matrix norm. As an example, ∥·∥1 is the well-known 1−norm.
inally, if A(k,m) are matrices in Cn×n for m ≥ 0, k ≥ 0, from [25] it follows that∑

m≥0

∑
k≥0

A(k,m) =

∑
m≥0

m∑
k=0

A(k,m − k). (3)

The paper is organized as follows: In Section 2, a new series development of the matrix exponential in terms of the
uler matrix polynomials is presented. Next, in Section 3, the algorithms designed to approximate the matrix exponential
y means of this kind of polynomials are exposed. Note that an absolute forward-type theoretical error analysis has been
onsidered. Section 4 includes a comprehensive numerical and computational comparison of the code derived from the
ew numerical method with respect to the most relevant codes related to the computation of the matrix exponential.
inally, conclusions are given in Section 5.

. Euler matrix polynomials

The Euler polynomials En(x) are defined as the coefficients of the generating function

2ext

et + 1
=

∑
n≥0

En(x)
n!

tn , |t| < π, (4)

see formula 24.2.6 from [26, p. 588]. These polynomials can be calculated either by using the Bernoulli polynomials
Bn(x) [27] through expression

En(x) =
2

n + 1

(
Bn+1(x) − 2n+1Bn+1

( x
2

))
, (5)

or by means of the explicit expression

En(x) =

n∑
k=0

(
n
k

)
Ek
2k

(
x −

1
2

)n−k

, (6)

here Ek are Euler numbers of the form En = 2nEn(1/2). The Euler numbers are given by the coefficients of

2et

e2t + 1
=

2
et + e−t =

∑ En
n!

tn , |t| <
π

2
, (7)
n≥0

2
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and satisfy both E2n+1 = 0, n ≥ 0 and

E2n = 1 −

n∑
k=1

(
2n

2k − 1

)
22k(22k

− 1)
2k

B2k, n ≥ 0,

where B2k is the 2kth Bernoulli number. These Bernoulli numbers Bn are defined by expressions (with the exception of
B1, all other odd Bernoulli numbers are null)

B0 = 1,B1 = −
1
2
,Bn = −

n−1∑
k=0

(
n
k

)
Bk

n + 1 − k
, n ≥ 2. (8)

Euler numbers appear, for example, in the MacLaurin series expansion of the secant and hyperbolic secant functions
iven, respectively, by (formula (4.19.5) from [26])

sec(t) =

∑
n≥0

(−1)nEn
(2n)!

t2n , |t| <
π

2
,

sech(t) =

∑
n≥0

En
(2n)!

t2n , |t| <
π

2
.

Some interesting properties and relations about Euler and Bernoulli polynomials can be found in [28,29]. A recent
application of the Euler polynomials to the study and forecast of air pollutants and to mechanical engineering can be
found in Refs. [30,31], respectively.

Computing
2

et + 1
eAt , where A ∈ Cn×n, by using (3) and (7), we find that:

(
2

et + 1

)
eAt = et(A−I/2)

(
2e

t
2

et + 1

)

=

(∑
n≥0

(A − I/2)n

n!
tn
)(∑

k≥0

Ek
2kk!

tk
)

=

∑
n≥0

∑
k≥0

(A − I/2)n

n!
tn

Ek
2kk!

tk

=

∑
n≥0

n∑
k=0

(A − I/2)(n−k)

(n − k)!
t (n−k) Ek

2kk!
tk

=

∑
n≥0

(
n∑

k=0

(
n
k

)
Ek
2k (A − I/2)n−k

)
tn

n!

=

∑
n≥0

En(A)tn

n!
, (9)

where En(A) is the nth Euler matrix polynomial (6) evaluated on matrix A. Thus, we can use expression (9) in order to
obtain the approximations to the matrix exponential as

eAt =
et + 1

2

∑
n≥0

En(A)tn

n!
, |t| < π. (10)

Moreover, if we take t = 1 and s represents the scaling factor of matrix A, then we will use the following expression
s an approximation to eA/2s :

eA/2s
≈ Pm(A/2s) =

e + 1
2

m∑
n=0

En(A/2s)
n!

, (11)

In order to employ this formula in an effective way for the computation of the matrix exponential, it is necessary to
determine, for each matrix A, the scaling factor s and the degree m of the approximation.
3
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3. Algorithms

3.1. Algorithm based on the Euler series of the matrix exponential

Taking t = 1 from (10) again, polynomial Pm(A) can be expressed as an Euler approximation of order m to the matrix
exponential eA in the way

eA ≈ Pm(A) =
e + 1
2

m∑
n=0

En(A)
n!

=

m∑
i=0

p(m)
i Ai, (12)

here the coefficients p(m)
i depend on the order m of the approximation. These coefficients are more and more similar to

he Taylor series coefficients as the polynomial degree m increases.
One of the most used procedures to efficiently compute the matrix polynomial Pm(A) is the Paterson–Stockmeyer

ethod [32]. In this method, the most efficient polynomial orders m belong to the following set:

M = {1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, . . . } .

If we denote with mk the kth element of M, the powers Ai, 2 ≤ i ≤ q, must be calculated, with q =
⌈√

mk
⌉

or
q = ⌊

√
mk⌋ being an integer divisor of mk. With these matrix powers Ai, we can efficiently compute Pmk (A) with a

omputational cost of the k matrix products as

Pmk (A) = (13)

(((pmkA
q
+ pmk−1Aq−1

+ pmk−2Aq−2
+ · · · + pmk−q+1A + pmk−qI)Aq

+ pmk−q−1Aq−1
+ pmk−q−2Aq−2

+ · · · + pmk−2q+1A + pmk−2qI)Aq

+ pmk−2q−1Aq−1
+ pmk−2q−2Aq−2

+ · · · + pmk−3q+1A + pmk−3qI)Aq

. . .

+ pq−1Aq−1
+ pq−2Aq−2

+ · · · + p1A + p0I.

The reason for such a choice of polynomial orders in the above set M is that the number of matrix products required
to evaluate polynomials of degree m with mk < m ≤ mk+1 is the same. However, the approximation of degree mk+1 will
be theoretically more accurate than the ones of the other lower degrees.

Absolute forward error will be considered for the determination of the order m ∈ M of the Euler approximation and
the scaling factor s, as exposed next. Let m ∈ M be a sufficiently large value so that the coefficients p(m)

i of the Euler
approximation Pm(A) from (12) to eA are almost equal to Taylor approximation coefficients of the same order m. Then,
the absolute forward error when computing Pm(A) can be bounded as

Eaf (Pm(A)) =
eA − Pm(A)

 ≈

∑
i>m

aiAi

 ,

where
∑

i>m aiAi is the absolute forward error of the Taylor approximation of order m to the matrix exponential eA.
Let hm(x) =

∑
i>m aixi and h̃m(x) =

∑
i>m |ai| xi. If Theorem 1.1 from [33] is applied, then

Eaf (Pm(A)) ≈ ∥hm(A)∥ ≤ h̃m (αm) ,

where

αm = max
{Ai

1/i : i = m + 1,m + 2, . . . , 2m + 1
}

.

Let Θm be

Θm = max

{
θ ≥ 0 :

∑
i>m

|ai| θ i
≤ u

}
, (14)

where u = 2−53 is the unit roundoff in IEEE double precision arithmetic. Table 1 shows for each m ∈ M the corresponding
value Θm.

If it is satisfies that

αm < Θm, (15)

then, we have

Eaf (Pm(A)) ≈ ∥hm(A)∥ ⩽ h̃m(αm) ⩽ h̃m(Θm) ⩽ u. (16)
and the scaling parameter s will be 0.

4
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Table 1
Values Θm .
m Θm m Θm

1 1.4901161156840223 · 10−8 25 2.5585766884181380 · 100

2 8.7334702258487179 · 10−6 30 3.7810696269831392 · 100

4 1.6783942982781048 · 10−3 36 5.4064650937902918 · 100

6 1.7764527083684662 · 10−2 42 7.1556200904384877 · 100

9 1.1483174747739708 · 10−1 49 9.3073843996022152 · 100

12 3.3521368782861483 · 10−1 56 1.15453483152121912 · 101

16 8.2460319163860885 · 10−1 64 1.41791073371113185 · 101

20 1.5041473223951629 · 100 72 1.68723620122422204 · 101

Algorithm 1: Given a matrix A ∈ Cn×n, a minimum order mlower ∈ M, and a maximum order mupper ∈ M, this
algorithm computes E ≈ eA by an Euler approximation (12) of order m, mlower ≤ m ≤ mupper .

1 Obtain the order m, mlower ≤ m ≤ mupper , and the scaling parameter s ∈ N ∪ {0} by using Algorithm 2;
2 Evaluate the matrix polynomial E = Pm(A/2s) by Formula (13);
3 for i = 1 : s do
4 E = E2;
5 end

However, if (15) is not fulfilled, then the smallest value s such that 2−sαm < Θm must be determined. In this case, we
btain

Eaf (Pm(A/2s)) ≈
hm(A/2s)

 ⩽ h̃m(2−sαm) ⩽ h̃m(Θm) ⩽ u. (17)

Further information about how computing forward and backward errors is available at [34].
Algorithm 1 calculates the approximation to the matrix exponential, where the scaling and squaring technique and

he Paterson–Stockmeyer method have been considered. In Line 1, the order m of Euler approximation and the scaling
arameter s are calculated. For that, Algorithm 2 is run. In Line 2, the Paterson–Stockmeyer method is used for evaluating
m(A/2s). Finally, in Lines 3–5, eA is recovered by using Formula (1).

.2. Algorithm for providing the polynomial order m and the factor scaling s

Algorithm 2 is responsible for supplying the appropriate values of the order m of the approximation polynomial Pm(A)
o the matrix exponential and the scaling factor s. The algorithm also returns all the powers of matrix A needed to
fficiently evaluate the mentioned polynomial by the Paterson–Stockmeyer method. From Lines 1 to 12, the algorithm
ries to find the minimum degree m ∈ [mlower ,mupper ] of the polynomial for which expression (15) is satisfied. Meanwhile,
he necessary powers of A are also calculated. If this condition is satisfied for any of the allowed values of m, the scaling
alue s will be equal to 0, as indicated in Line 13. Otherwise, Lines 15 and 16 will determine that the order m of the
olynomial will be equal to the maximum value allowed and the scaling factor s will be set after evaluating the expression
= log2(αm/θm).

. Numerical experiments

Under the premise of evaluating and comparing the performance of the proposed algorithms in the computation of
he matrix exponential function, a series of numerical experiments have been carried out. In all of them, the following
tate-of-the-art codes were used:

• expm_euler: this is the MATLAB implementation of Algorithm 1. The selectable values of m as orders of the
approximation polynomial Pm(A) to the exponential for each matrix will belong to the set {42, 49, 56}. The code
is available at the website http://personales.upv.es/joalab/software/expm_euler.m.

• exptaynsv3: it computes the matrix exponential using a scaling and squaring algorithm and Taylor polynomial
approximation [16].

• expm_mp: it is based on a multiprecision algorithm that can employ diagonal Padé or Taylor approximants after the
corresponding Schur decomposition or in transformation-free form [35]. This code requires the Advanpix Multipreci-
sion Computing Toolbox [36]. In our case, all executions were performed using the Taylor-based transformation-free
variant in double numeric precision (16 decimal digits).

• exptayotf: it estimates on-the-fly the backward error for the approximation of the matrix exponential and selects
the scaling parameter s and the Taylor polynomial degree m in order to reach any desired accuracy [18]. Default
values for the code input parameters were considered.
5
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Algorithm 2: Given a matrix A ∈ Cn×n, a minimum order mlower ∈ M, and a maximum order mupper ∈ M, this
lgorithm provides an order m, mlower ≤ m ≤ mupper , a scaling factor s, and the necessary powers of A to compute
A.
1 A1 = A; i = lower; f = 0;
2 for j = 2 to ⌈

√
mi⌉ do

3 Aj = Aj−1A;
4 end
5 while f = 0 and i ≤ upper do
6 v =

√
mi; j = ⌈v⌉;

7 if j > v then Aj = Aj−1A ;
8 Compute ai ≈

Ami+1
 from Aj and A;

9 αi = mi+1
√
ai;

10 if αi < Θi then f = 1 ;
11 else i = i + 1 ;
12 end
13 if f = 1 then s = 0 ;
14 else
15 i = upper;
16 s = max (0, ⌈log2(αi/Θi)⌉);
17 end
18 m = mi;

• expm3: it combines a scaling and squaring algorithm with a Taylor approximation which reduces the number of
matrix multiplications, in comparison with the Paterson–Stockmeyer method, for polynomial evaluation. The code
incorporates additional adjustments to avoid overscaling [19].

• expm: it is the MATLAB built-in function that computes the matrix exponential by using a scaling and squaring
algorithm with a Padé approximation [13,37].

• sexpm: it is based on a variant of the scaling and squaring algorithm and subdiagonal Padé approximants of low
degree, with the aim of reducing the overall cost and avoiding the potential instability caused by overscaling [14].

All the numerical experiments were launched on a Microsoft Windows 11 x64 PC equipped with an 11th Generation
ntel Core i5-11500 @2.70 GHz processor and 16 GB of RAM, using MATLAB R2022a.

The following three groups of matrices were considered to form a useful testbed for comparing the performance of the
ifferent codes with each other. In the three mentioned groups, the matrix exponential function was ‘‘exactly’’ computed
hanks to the MATLAB Symbolic Math Toolbox and the function vpa (variable-precision floating-point arithmetic) with
56 decimal digits:

• Group 1: one hundred diagonalizable complex matrices of size 128 × 128 whose 2-norm ranged from 0.1 to 300.
All these matrices were created as A = V · D · V−1, where V is an orthogonal matrix such as V = H/

√
128, with H

being the Hadamard matrix of dimension 128, and D is a random diagonal matrix with complex eigenvalues. The
‘‘exact’’ matrix exponential was computed as exp (A) = V · exp (D) · V T , in combination with the function vpa.

• Group 2: one hundred non-diagonalizable complex matrices of size 128 × 128 and with 2-norm varying from 3.76 to
337.72. They were generated as A = V · J ·V−1. Meanwhile V was again obtained in the same way as for the previous
group, J is a Jordan matrix with complex eigenvalues whose modules are less than 5 and with a randomly determined
algebraic multiplicity between 1 and 3. The matrix exponential was ‘‘exactly’’ computed as exp (A) = V ·exp (J) ·V−1,
together with the function vpa.

• Group 3: fifty-two matrices of dimension 128 × 128 belonging to the Matrix Computation Toolbox (MCT) [38]
and twenty matrices of the same size coming from the Eigtool MATLAB Package (EMP) [39]. Of all these, forty-five
matrices could be utilized in the corresponding numerical experiments, while the remaining twenty-seven matrices
(sixteen from the MCT and eleven from the EMP) were excluded for these reasons:

– Their ‘‘exact’’ solution could not be computed: matrices 4, 5, 10, 16, 17, 18, 21, 25, 26, 35, 40, 42, 43, 44, and
49 from the MCT, and matrices 5, and 6, 7, and 9 from the EMP.

– The relative error produced by any of the above codes was excessively large, due to their ill-conditioning: matrix
2 from the MCT, and matrices 3, 4, 5 and 10 from the EMP.

– They are repetitive (already present in MCT): matrices 8, 11, 13, and 16 from the EMP.

The matrix exponential function was ‘‘exactly’’ computed as:
6
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Table 2
Improvement percentage in the normwise relative error committed by expm_euler and the rest of the
codes, for the 3 groups of matrices.

Group 1 Group 2 Group 3

Er(expm_euler)<Er(exptaynsv3) 71.00% 68.00% 64.44%
Er(expm_euler)>Er(exptaynsv3) 29.00% 32.00% 35.56%

Er(expm_euler)<Er(expm_mp) 54.00% 53.00% 66.67%
Er(expm_euler)>Er(expm_mp) 46.00% 47.00% 33.33%

Er(expm_euler)<Er(exptayotf) 75.00% 68.00% 62.22%
Er(expm_euler)>Er(exptayotf) 25.00% 32.00% 37.78%

Er(expm_euler)<Er(expm3) 100.00% 99.00% 95.56%
Er(expm_euler)>Er(expm3) 0.00% 1.00% 4.44%

Er(expm_euler)<Er(expm) 96.00% 93.00% 91.11%
Er(expm_euler)>Er(expm) 4.00% 7.00% 8.89%

Er(expm_euler)<Er(sexpm) – – 100.0%
Er(expm_euler)>Er(sexpm) – – 0%

– Thanks to the application of the MATLAB function eig to the input matrix A, matrices D and V will be obtained
such that A = V · D · V−1 and the matrix E1 = V · exp(D) · V−1 will be computed.

– The matrix E2 = exp(A) will be worked out by means of the MATLAB function expm, using the function vpa as
well.

– Matrix E1 will be considered as the ‘‘exact’’ exponential of A if it is fulfilled that:
∥E1 − E2∥2

∥E1∥2
≤ u.

Otherwise, matrix A will be excluded from Group 3.

The normwise relative error incurred by each of the codes described above in the calculation of the matrix exponential
will be quantified as follows:

Er(A) =
∥ exp(A) − ẽxp(A)∥2

∥exp(A)∥2
.

While exp(A) represents the exact solution, ẽxp(A) is equivalent to the approximate one computed by each code. In fact,
Table 2 summarizes the percentage of matrices for which the relative error committed by expm_euler was lower or
higher than that attributable to the rest of the codes. As it can be seen, expm_euler always obtained a more accurate
esult for more than 50% of the cases than the other functions, to a greater or lesser extent. As an example, expm_euler
as more accurate than exptaynsv3 in 71%, 68%, or 64.44% of the matrices belonging to Groups 1, 2, and 3. In general,

expm_euler was far superior to expm3, expm or sexpm. Nevertheless, its superiority was much more modest over
expm_mp in Groups 1 and 2, and somewhat more notable in Group 3. Intermediate improvement percentages compared
to those mentioned above, but quite similar to those of exptaynsv3, were obtained against exptayotf.

It should be clarified that the function sexpmwas not used in the experiments performed on the first 2 sets of matrices.
This was because the excessively high relative errors involved in its execution would have implied rejecting about 50%
of the matrices in these groups.

Moreover, Tables 3, 4, and 5 provide more detailed information on the improvement percentage of expm_euler versus
the remaining codes, and vice versa, distributed in four error intervals and respectively for the matrices conforming
the three groups. While E1 represents the relative error corresponding to expm_euler, E2 is equivalent to the error
incurred by any of the other functions. As can be appreciated, the highest improvement percentages of expm_euler
versus exptaynsv3, expm_mp and exptayotf occur mainly in the first two ranges. Conversely, these percentages are
more equitably distributed in the four intervals for expm3 or expm, or mainly centred on the last interval for sexpm.
Obviously, this means that the improvement in the accuracy of the results provided by expm_euler is, in quantifiable
terms, clearly more remarkable in the case of the latter (expm3, expm and sexpm) and less noticeable in the case of the
former (exptaynsv3, expm_mp and exptayotf). In general, the enhancement of all the functions against expm_euler
also seems to be slight, except for expm in the second group of matrices, and for expm3 and expm in the third group.

Table 6 stores different statistical metrics corresponding to the relative error of the distinct methods. These include
the maximum or minimum values reached, the mean, the median, the standard deviation and the sum of all errors. In
the particular case of the median, expm_euler offered the smallest value for the 3 sets of matrices. Regarding the sum
of the errors, expm_euler provided the smallest value in the second group of matrices, or the smallest second value for
the matrices in the first and third groups. In any case, a careful analysis of any of the parameters listed in the table will
give an idea of the outstanding goodness of the results provided by expm_euler.

Directly correlated to the above-mentioned error values is the number of significant digits that at least guarantee each
of the methods in the computations, as reported in Table 7. In the worst case, expm_euler delivers at least 13 correct
7
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Table 3
In detail, improvement percentage in the normwise relative error committed by expm_euler (E1) and the rest of the
codes (E2) for Group 1.

E2 < 2E1 2E1 ≤ E2 < 5E1 5E1 ≤ E2 < 10E1 10E1 ≤ E2
E1 < 2E2 2E2 ≤ E1 < 5E2 5E2 ≤ E1 < 10E2 10E2 ≤ E1

Er(expm_euler)<Er(exptaynsv3) 69.01% 23.94% 5.63% 1.41%
Er(expm_euler)>Er(exptaynsv3) 82.76% 17.24% 0.00% 0.00%

Er(expm_euler)<Er(expm_mp) 85.19% 11.11% 3.70% 0.00%
Er(expm_euler)>Er(expm_mp) 89.13% 8.70% 2.17% 0.00%

Er(expm_euler)<Er(exptayotf) 58.67% 33.33% 6.67% 1.33%
Er(expm_euler)>Er(exptayotf) 88.00% 12.00% 0.00% 0.00%

Er(expm_euler)<Er(expm3) 3.00% 18.00% 23.00% 56.00%
Er(expm_euler)>Er(expm3) 0.00% 0.00% 0.00% 0.00%

Er(expm_euler)<Er(expm) 8.33% 23.96% 47.92% 19.79%
Er(expm_euler)>Er(expm) 100.00% 8.89% 0.00% 0.00%

Er(expm_euler)<Er(sexpm) – – – –
Er(expm_euler)>Er(sexpm) – – – –

Table 4
In detail, improvement percentage in the normwise relative error committed by expm_euler (E1) and the rest of the
codes (E2) for Group 2.

E2 < 2E1 2E1 ≤ E2 < 5E1 5E1 ≤ E2 < 10E1 10E1 ≤ E2
E1 < 2E2 2E2 ≤ E1 < 5E2 5E2 ≤ E1 < 10E2 10E2 ≤ E1

Er(expm_euler)<Er(exptaynsv3) 91.18% 8.82% 0.00% 0.00%
Er(expm_euler)>Er(exptaynsv3) 93.75% 6.25% 0.00% 0.00%

Er(expm_euler)<Er(expm_mp) 98.11% 1.89% 0.00% 0.00%
Er(expm_euler)>Er(expm_mp) 95.74% 4.26% 0.00% 0.00%

Er(expm_euler)<Er(exptayotf) 82.35% 17.65% 0.00% 0.00%
Er(expm_euler)>Er(exptayotf) 87.50% 12.50% 0.00% 0.00%

Er(expm_euler)<Er(expm3) 15.15% 44.44% 28.28% 12.12%
Er(expm_euler)>Er(expm3) 100.0% 0.00% 0.00% 0.00%

Er(expm_euler)<Er(expm) 51.61% 46.24% 2.15% 0.00%
Er(expm_euler)>Er(expm) 42.86% 42.86% 14.29% 0.00%

Er(expm_euler)<Er(sexpm) – – – –
Er(expm_euler)>Er(sexpm) – – – –

Table 5
In detail, improvement percentage in the normwise relative error committed by expm_euler (E1) and the rest of the
codes (E2) for Group 3.

E2 < 2E1 2E1 ≤ E2 < 5E1 5E1 ≤ E2 < 10E1 10E1 ≤ E2
E1 < 2E2 2E2 ≤ E1 < 5E2 5E2 ≤ E1 < 10E2 10E2 ≤ E1

Er(expm_euler)<Er(exptaynsv3) 79.31% 10.34% 6.90% 3.45%
Er(expm_euler)>Er(exptaynsv3) 75.00% 12.50% 0.00% 12.50%

Er(expm_euler)<Er(expm_mp) 56.67% 10.00% 10.00% 23.33%
Er(expm_euler)>Er(expm_mp) 73.33% 13.33% 0.00% 13.33%

Er(expm_euler)<Er(exptayotf) 60.71% 25.00% 7.14% 7.14%
Er(expm_euler)>Er(exptayotf) 76.47% 11.76% 0.00% 11.76%

Er(expm_euler)<Er(expm3) 4.65% 16.28% 37.21% 41.86%
Er(expm_euler)>Er(expm3) 50.00% 0.00% 0.00% 50.00%

Er(expm_euler)<Er(expm) 19.51% 29.27% 24.39% 26.83%
Er(expm_euler)>Er(expm) 25.00% 0.00% 0.00% 75.00%

Er(expm_euler)<Er(sexpm) 0.00% 2.22% 2.22% 95.56%
Er(expm_euler)>Er(sexpm) 0.00% 0.00% 0.00% 0.00%

digits in the exponential calculation for each matrix in Groups 1 and 2, or 7 digits for matrices in Group 3. Identical
values were also achieved by exptaynsv3, expm_mp, or exptayotf, although exptaynsv3 ensures 8 decimal digits for
atrices in Group 3. These values were equal or slightly lower for expm3 or expm, and excessively reduced for sexpm.
Figs. 1, 2, and 3 graphically show the results of the different experiments performed in the approximation of the

xponential of the matrices comprising Groups 1, 2 and 3, respectively. More specifically, each Figure is in turn constituted
y the following 8 subfigures: the normwise relative errors (a), the performance profiles (b), the ratio of normwise relative
rrors between expm_euler and the other codes (c), the lowest and highest normwise relative error rates (d), the orders
8
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Table 6
Minimum, maximum, mean, median, standard deviation, and sum values for the normwise relative errors incurred by
the distinct codes for Groups 1, 2, and 3, respectively.

Min. Max. Mean Median Std. Dev. Sum

expm_euler 9.23e−18 2.62e−14 5.53e−15 3.75e−15 5.10e−15 5.53e−13
exptaynsv3 3.25e−17 2.51e−14 7.36e−15 6.30e−15 5.66e−15 7.36e−13
expm_mp 9.20e−18 1.98e−14 5.36e−15 4.40e−15 4.02e−15 5.36e−13
exptayotf 2.27e−16 2.29e−14 7.99e−15 6.14e−15 6.11e−15 7.99e−13
expm3 8.30e−16 4.87e−13 8.27e−14 4.96e−14 9.21e−14 8.27e−12
expm 6.17e−17 2.08e−13 3.22e−14 2.50e−14 3.29e−14 3.22e−12
sexpm – – – – – –

expm_euler 2.68e−16 1.88e−14 5.56e−15 4.19e−15 4.28e−15 5.56e−13
exptaynsv3 2.59e−16 2.69e−14 6.66e−15 5.65e−15 5.30e−15 6.66e−13
expm_mp 2.42e−16 2.21e−14 5.77e−15 4.75e−15 4.35e−15 5.77e−13
exptayotf 2.89e−16 2.81e−14 6.64e−15 4.78e−15 5.34e−15 6.64e−13
expm3 1.48e−15 1.87e−13 2.72e−14 1.82e−14 2.79e−14 2.72e−12
expm 5.82e−16 3.28e−14 1.04e−14 8.66e−15 7.60e−15 1.04e−12
sexpm – – – – – –

expm_euler 2.04e−23 1.21e−08 3.44e−10 1.93e−16 1.86e−09 1.55e−08
exptaynsv3 1.86e−20 2.20e−09 5.82e−11 3.12e−16 3.32e−10 2.62e−09
expm_mp 1.86e−20 2.41e−08 6.63e−10 4.48e−16 3.68e−09 2.98e−08
exptayotf 1.86e−20 5.02e−08 1.12e−09 2.43e−16 7.48e−09 5.03e−08
expm3 5.31e−17 1.83e−08 4.19e−10 1.85e−15 2.73e−09 1.89e−08
expm 1.77e−17 4.53e−08 1.02e−09 1.35e−15 6.76e−09 4.59e−08
sexpm 1.97e−14 9.04e−05 2.01e−06 2.18e−13 1.35e−05 9.06e−05

Table 7
Minimum, maximum, mean, median, and standard deviation values for the number of
significant digits in the computed solution by the distinct codes for Groups 1, 2, and 3,
respectively.

Min Max. Mean Median Std. Dev.

expm_euler 13 17 13.95 14 0.58
exptaynsv3 13 16 13.80 14 0.59
expm_mp 13 17 13.97 14 0.56
exptayotf 13 15 13.73 14 0.58
expm3 12 15 12.84 13 0.65
expm 12 16 13.18 13 0.59
sexpm – – – – –

expm_euler 13 15 13.94 14 0.47
exptaynsv3 13 15 13.88 14 0.52
expm_mp 13 15 13.96 14 0.49
exptayotf 13 15 13.87 14 0.51
expm3 12 14 13.26 13 0.46
expm 13 15 13.62 14 0.53
sexpm – – – – –

expm_euler 7 22 14.49 15 2.20
exptaynsv3 8 19 14.51 15 1.84
expm_mp 7 19 14.31 15 2.00
exptayotf 7 19 14.40 15 1.89
expm3 7 16 13.56 14 1.71
expm 7 16 13.93 14 1.72
sexpm 4 13 11.64 12 1.71

m of the approximation polynomials or the Padé approximants (e), the values of the scaling parameter s (f), the execution
imes expressed in seconds (g), and the ratio of the execution times between expm_euler and the remaining codes in
omparison (h).
Firstly, the Figs. 1(a), 2(a), and 3(a) depict the normwise relative error caused by each method in the computation of

atrices in our testbed with respect to the exact solution. In them, the solid black line represents the kexp(A)u function,
here kexp(A) is the condition number of the exponential function for each matrix A and where u is the unit roundoff.

This line indicates the expected error in the computation of each matrix. Although slightly above it is also allowed, the
stability of the methods is manifested if their errors are, preferably, below this line. Clearly, all the methods have their
values below or slightly above this continuous line, with the exception of sexpm, which presents its values above in a
more differentiated way. It is convenient to clarify that the following matrices were not incorporated in the data shown
in Fig. 3(a), due to the high condition numbers they present for the exponential function: 6, 7, 12, 15, 23, 23, 36, 39, 50,
and 51 from the MCT, and 1, and 15 from the EMP. Nevertheless, they were taken into account and included in equal
conditions in any of the other results exposed.
9
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Fig. 1. Experimental results for Group 1.
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Fig. 2. Experimental results for Group 2.
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Fig. 3. Experimental results for Group 3.
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Table 8
Minimum, maximum, mean and median values reached by the parameters m and s for Groups 1, 2, and 3, respectively.

m s

Min. Max. Mean Median Min. Max. Mean Median

expm_euler 42 56 55.51 56 0 5.00 3.80 4
exptaynsv3 9 30 27.54 30 0 7.00 5.29 6
expm_mp 12 72 39.36 42 0 6.00 4.33 5
exptayotf 9 30 25.44 25 0 7.00 5.49 6
expm3 18 18 18.00 18 0 10.00 8.17 9
expm 7 13 12.94 13 0 9.00 7.45 8
sexpm – – – – – – – –

expm_euler 42 56 55.72 56 0 5.00 3.93 4
exptaynsv3 25 30 27.45 25 0 7.00 5.48 6
expm_mp 25 72 40.25 42 1 6.00 4.49 5
exptayotf 20 30 25.65 25 1 7.01 5.69 6
expm3 18 18 18.00 18 3 10.00 8.44 9
expm 13 13 13.00 13 2 9.00 7.61 8
sexpm – – – – – – – –

expm_euler 42 56 48.38 42 0 10.00 1.87 0
exptaynsv3 12 30 25.42 25 0 12.00 2.69 0
expm_mp 0 110 25.56 25 0 10.00 1.89 0
exptayotf 12 30 24.02 25 0 12.32 2.82 1
expm3 18 18 18.00 18 0 16.00 4.93 3
expm 0 13 9.69 13 0 12.00 2.60 0
sexpm 3 5 4.09 4 3 4.00 3.98 4

Figs. 1(b), 2(b), and 3(b) plot the performance profiles. Each point (α, p) on the picture represents the percentage p of
matrices, expressed as a percentage of one, for which the error that takes places in calculating their exponential by each
method in particular is less than or equal to α times the smallest relative error made by all the codes to be compared.
Regarding the first 2 groups of matrices, expm_euler and expm_mp present the highest values in the graph, very similar
to each other, confirming that they are the best option and provide the most accurate results. They are followed by
exptaynsv3 and exptayotf, while expm and expm 3 occupy lower positions, offering more inaccurate results. In the
case of Group 3, expm_euler now stands out with a greater difference against its competitors, matched only in a small
strip of the graph by exptaynsv3. Below them we find exptayotf and expm_mp, where the latter now offers a more
modest performance in terms of accuracy. Once again, expm, expm3, and especially sexpm, are clearly surpassed, exposing
than they are the least reliable codes.

The ratio of the relative errors between the other codes and expm_euler is shown in Figs. 1(c), 2(c), and 3(c), all of
them arranged in descending order according to the quotient Er(exptaynsv3)/Er(expm_euler). Logically, values of this
ratios above unity for each matrix indicate the highest accuracy in the exponential function obtained by expm_euler,
while values below reflect the opposite. As we can observe, a large part of the values in the graph are greater than unity,
thus being favourable results for expm_euler.

Figs. 1(d), 2(d), and 3(d) illustrate percentage of matrices for which each method has obtained either the most accurate
or the most inaccurate result in calculating the exponential function. Respectively for the matrices composing the test
battery, expm_euler provided the smallest relative errors in 42%, 39%, or 33% of the cases. These values were always
higher than those supplied by any of the other methods considered, followed by those of expm_mp for Groups 1 (33%)
and 2 (30%), or exptayotf for Group 3 (29%). As expected, the percentages of cases in which the highest relative error
occurred corresponded to sexpm, expm3, and expm.

Table 8 contains the minimum and maximum values attained by the order m of the approximation polynomial to
the matrix exponential and the scaling factor s. The mean and median of these parameters are reported as well. As we
mentioned in its description at the beginning of this section, expm_euler used values of m between 42 and 56, where the
tendency was to employ a degree equal to 56 for the first two sets of matrices and more diversified values for the third.
With respect to the methods based on Taylor polynomials (exptaynsv3, expm_mp, exptayotf, and expm3), expm_mp
required the highest orders for the matrices of Groups 1 and 2. In the case of the matrices of Group 3, the value of its
median was similar to that of exptaynsv3 and exptayotf, although the maximum value reached was equal to 110,
while the latter did not exceed the value of 30. It is worth noting that expm3 always required a fixed value of m equal to
18, which would explain their behaviour in terms of accuracy of results, since it is a low value. The values of m in the case
of expm are referred to the order [m/m] of the diagonal Padé approximant. In contrast, the value of m given for sexpm is
the denominator of the Padé approximant of order [k/m].

Precisely, Figs. 1(e), 2(e), and 3(e) allow us to analyse in more detail the different values of m required by each code.
Thus, we can notice that expm_euler needed values of m equal to 56 for most of the matrices in the first two groups,
while these values were distributed almost 50/50 between 42 and 56 for the third group.

Simultaneously, Table 8 also compiles the values of the scaling parameter s. In the light of these data, we can indicate

that expm_euler usually demanded smaller values of s than the other codes, while the highest values were on the side
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Table 9
Elapsed time (T), in seconds, required by all the codes for the three groups.

Group 1 Group 2 Group 3

T(expm_euler) 0.54 0.55 0.43
T(exptaynsv3) 0.66 0.68 0.41
T(expm_mp) 4.65 4.91 2.66
T(exptayotf) 0.52 0.54 0.37
T(expm3) 0.31 0.31 0.14
T(expm) 0.40 0.39 0.21
T(sexpm) – – 0.81

Table 10
Ratio of the whole elapsed time between the remaining codes and expm_euler, for the
3 groups of matrices.

Group 1 Group 2 Group 3

T(exptaynsv3)/T(expm_euler) 1.23 1.22 0.95
T(expm_mp)/T(expm_euler) 8.63 8.86 6.19
T(exptayotf)/T(expm_euler) 0.96 0.97 0.86
T(expm3)/T(expm_euler) 0.58 0.56 0.33
T(expm)/T(expm_euler) 0.74 0.71 0.49
T(sexpm)/T(expm_euler) – – 1.88

of expm3. Figs. 1(f), 2(f), and 3(f) represent these same results graphically, although individually for each matrix. For the
matrices of Groups 1 and 2, their 2-norms are growing as the index of the matrix increases from 1 to 100. Consequently, it
is very straightforward to appreciate how the value of s necessary becomes higher and higher according to the increment
f the matrix identifier, regardless of the code to which we pay attention. This ordering according to its 2-norm is no
onger respected for matrices from Group 3. Consequently, these values of s are now much more freely dispersed in the
icture. It is noticeable the value of s required by sexpm, which in most cases is 4.
Regarding the computational cost of the codes taken into account, Table 9 details the execution times of all of them,

or the 3 groups of matrices. They have been accounted for by launching 11 distinct runs, discarding the first one and
btaining the average value of the remaining ones. These values indicate that expm_mp was always the code that spent
he most time on the exponential computation, followed by exptaynsv3 3 for matrices of Groups 1 and 2, or by sexpm
or Group 3. Inversely, expm3, followed by expm, were always the fastest codes. However, it should be noted that the
comparison with expm is not entirely fair, since it could run pre-compiled code as part of the MATLAB distribution, which
is much more efficient than the interpreted code of which the other implementations are composed. If we take a look at
the expm_euler response times, we can conclude that they can be categorized as intermediate between those invested
by the different methods. These same results are depicted in Figs. 1(g), 2(g), and 3(g) in the form of a bar graph.

The quotient between the total computation time devoted by each of the methods and expm_euler is given in
able 10. Thus, for each of the three groups of matrices, expm_euler is 8.63, 8.86 and 6.19 times faster than expm_mp,

one of its main competitors especially for the matrices of the first two sets. For Groups 1 and 2, expm_euler exhibited
a speedup of 1.23 and of 1.22 versus exptaynsv3. Nevertheless, for Group 3, exptaynsv3 improved in time to
expm_euler, although very slightly. Compared to exptayotf, expm_euler was always outperformed, with velocity
increments for the former of 1.04, 1.03 and 1.16.

Finally, the ratio of the time spent by each method and expm_euler on the calculation of the exponential of each of
the matrices forming our testbed is plotted in detail in Figs. 1(h), 2(h), and 3(h), all of them ordered according to the factor
T(exptaynsv3)/T(expm_euler). With the exception of expm_mp and sexpm, whose values stand out in the upper part of
the pictures, it can be stated that the rest of the methods gave place to values that were always, or in the vast majority of
cases, below the above-mentioned factor. Accordingly, the ratio between expm_mp and expm_euler took values belonging
to the intervals [6.43, 10.97], [6.86, 11.42] and [0.93, 24.19], respectively for each group of matrices. Furthermore, these
intervals were equal to [0.84, 1.84], [1.03, 1.97] and [0.31, 2.40] in the case of exptaynsv3. Not surprisingly, the values
for exptayotf were somewhat more modest, corresponding to the ranges [0.71, 1.46], [0.77, 1.44], and [0.36, 1.88].

5. Conclusions

In this paper, the novel application of Euler polynomials in the computation of the matrix exponential function has been
presented. Besides, the well-known scaling and squaring technique has been also taken into consideration to reduce the
norm of the calculation matrices. The paper incorporates the appropriate deductions and the mathematical formulations
corresponding to the series development of this function in terms of the Euler matrix polynomials. From this formulation,
together with the one described for determining the order of the approximation polynomial and the scaling parameter
by means of an absolute forward-type theoretical error, the pertinent algorithms have been designed. They have been
implemented and have given rise to a code programmed in the MATLAB language whose numerical and computational

performance has been compared with those of the best known codes in the literature devoted to the calculation of
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the exponential function. For this purpose, a test battery composed of matrices belonging to three well differentiated
categories has been used. The results reveals that the new numerical method is as accurate or even more accurate than
practically all the methods used in the comparison, with computation times halfway among all of them.
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